Deducing Formula for (x+y)^2
Trending Questions
- 10404
- 10202
- 10101
- 10606
Using identities, evaluate
- 95.06
- 96.42
- 94.56
- 95.26
The square of 2012 is equal to
422.50
415.75
424.25
420.25
If (a+b)=6, and ab=2, then the value of 1a2+1b2 is equal to
8
12
16
4
- 1521
- 1625
- 1574
- 1624
The square of 10.2 is equal to
102.02
104.04
104.02
102.04
Addition of expression
None of these
The value of 442 is equal to
1836
1936
1816
1916
The value of 124 calculated using binomial expansion is
20734
20736
20732
20738
The square of 2015 is equal to ____
408125
- 408
- None of the above
408251
Question 86 (viii)
Using suitable identities, evaluate the following:
52×53
- 20
- 25
- 5
- 4
- a2+b2+ab
- 2a2+b2+2ab
- 4a2+b2+4ab
- a2+b2+2ab
The expansion (x+a)(x+b) is
- x2+(a−b)x+ab
- x2+(a+b)x+ab
- x2−(a+b)x+ab
- x2+(a+b)x−ab
Question 70
In the following question, state whether the given statements are true (T) or false (F).
329.25=3×102+2×101+9×100+2×10−1+5×10−2
- (-8/3)
- (14/5)
- (-11/2)
- 4
9, 96, 016
9, 86, 004
9, 96, 004
9, 93, 004
Use suitable identity and find the value of 972
10409
90409
9409
11049
The square of 4014 is
810116
162014
162018
1620116
Use a suitable identity to get each of the following products:
(a2+b2)(−a2+b2)
The square of 52 is equal to
2704
2814
2714
2724